Simplifying the shop Floor: Assembling the Software Defined Factory

Victor Abelairas,
Sr. Director, IoT Cloud Solutions, Wind River
Software Defined Critical Infrastructure

Opportunity?

Threat?
Why Now?

Motivations for Change

<table>
<thead>
<tr>
<th>Business Drivers</th>
<th>Technology Enablers</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Obsolescence cycle</td>
<td>▪ Internet of Things (IoT)</td>
</tr>
<tr>
<td>▪ Capital cost reduction pressure</td>
<td>▪ Virtualization</td>
</tr>
<tr>
<td>▪ Current systems limit or lag innovation</td>
<td>▪ Cloud</td>
</tr>
<tr>
<td>▪ Poor component interoperability</td>
<td>▪ Open platforms</td>
</tr>
<tr>
<td>▪ High integration, maintenance costs</td>
<td>▪ Analytics</td>
</tr>
<tr>
<td>▪ Insufficient system security model</td>
<td>▪ Proof points from adjacent industries</td>
</tr>
</tbody>
</table>
Two Catalysts for Change

- 2014: “Functional Characteristics” paper, presented to ARC Forum Feb ‘15
- 4Q15: Awarded contract to Lockheed Martin for early stage prototype development of an open control system
- Jan 2016: Issued press release and held Industry Day for suppliers
- Feb 2016: RFI submissions

- 2015: “Coalition of the Willing II”
- “… the Coalition of the Willing (COW II) project is a non-proprietary, multi-phased project to break down proprietary and operational siloes and to prove that enhanced operation can be achieved economically through use of a distributed intelligence platform”
The Shifting System Vision of ExxonMobil

The Century of the Controller

THE ASCENT OF AUTOMATION

The evolution of industrial control systems over a period of 100 years, beginning in 1920 and extending through 2020.

Graphic reproduced with permission of ExxonMobil.
The Shifting System Vision of ExxonMobil

Transition to the Cloud

OPEN SYSTEMS ARCHITECTURE

Graphic reproduced with permission of ExxonMobil.
We’ve seen similar transitions elsewhere …

Avionics: Certifiable architecture providing a common platform for multiple avionics functions with guaranteed performance and isolation.

Telecom: Virtualized server platform with six-nines availability, failure detection, system management, and highly optimized performance.
| Reliability and Availability | Fault tolerant to multiple software and hardware faults, no single point of failure
| | Six-nines (99.9999%) network availability
| | Minimal loss of service or data on failover |
| Management | Software management: live patching and hitless upgrades
| | VM management: fast and easy VM definition and creation
| | OAMP feeds (operations administration, management and performance) |
| Performance and Scalability| Hundreds of simultaneous VMs with high-performance virtual switching
| | Provide high-performance services to VMs
| | High-performance VM-to-VM networking with minimal core utilization |
| Security | Encrypted AAA database (authentication, authorization, and accounting)
| | Network-level authentication
| | Data protection via encryption |
Enterprise vs. Industrial-Grade

Each approach comes with mutually exclusive benefits

Industrial Grade
- **High cost of failure**
 - OEM/TEM business model
 - Infrastructure of “Pets”
 - Legacy/stateful apps
 - Seasoned developers
 - HA via platform infrastructure
 - Low cost of entry for ISVs
 - Regulatory constraints
 - QoS for pay-as-you-go pricing

- **Service uptime brings value**
 - Service continuity
 - Scheduled downtime
 - Resiliency
 - Security
 - Authentication
 - Optimum resource utilization
 - Predictable performance
 - Minimum OPEX and TCO

Enterprise Grade
- **Low cost of failure**
 - Open source/white box model
 - Infrastructure of “Cattle”
 - New/stateless apps
 - Millennial developers
 - Application-based HA
 - ISVs require HA skills
 - Best-effort reliability
 - Subscription pricing

- **Avionics**
- **Industrial**
- **Traditional telecom**

- **OTT**
- **Social media**
- **Consumer Cloud**
Controller Consolidation

Scenario #1 = IMA Architecture

Single virtualized hardware platform, applications replacing discrete nodes
Infrastructure Virtualization

Scenario #2 = NFV Architecture

Scaleable, resilient, virtual hardware platform, hosting control and compute functions.
Detail View: Titanium Server for Automation & Control

Titanium Server Software

IT SYSTEMS

Cross-Domain Virtual Functions

Control Node
Industrial Grade Cloud Management and Middleware
- VM High Availability Management
- OAMP
- Fault Management

Compute Node
- Industrial Grade KVM
- Virtual NICs
- DPDK
- KVM Real-Time Extensions
- Low Latency

Storage Node
Industrial Grade Storage Cluster
- Centralized or Local

Host any guest OS
- Add carrier grade storage cluster
- Add carrier grade cloud management and telco middleware functions
- Add carrier grade accelerated vSwitch
- Add critical real-time performance enhancements to KVM
- Based on standard open source components
Ready for Software Defined Automation

The only commercial virtualization cloud that meets or exceeds the carrier grade standard

<table>
<thead>
<tr>
<th>Enterprise IT Platform Capability</th>
<th>Carrier Grade Cloud Requirements</th>
<th>Titanium Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection of failed VM</td>
<td>> 1 minute</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Detection of failed compute node</td>
<td>> 1 minute</td>
<td>~ 1 s</td>
</tr>
<tr>
<td>Recovery from control node failure</td>
<td>No support</td>
<td>< 25 s</td>
</tr>
<tr>
<td>vSwitch performance</td>
<td>1–2 Gbps</td>
<td>Line rate with minimum core utilization</td>
</tr>
<tr>
<td>Network link failure detection</td>
<td>Depends on Linux distribution</td>
<td>50 ms</td>
</tr>
<tr>
<td>Live migration for DPDK-based VMs</td>
<td>No support</td>
<td>Full support</td>
</tr>
</tbody>
</table>

- No support: 500 ms
- Full support: 200 ms
- Line rate with single core (512 B/frame)
We are not standing still ...

- Critical Infrastructure Cloud Platform: Evolving Titanium Server product for industrial-specific capability

- Adding true real-time capability
 - TSN (Time Sensitive Networking) implementation from the edge to the application
 - Time Coordinated Compute (TCC)

- More scale

- Industrial orchestration enhancements: Edge to fog

- Security enhancements including Trusted Platform support

- New service layer capability: Docker, Bare Metal, Kubernetes, Cloud Foundry …